Destacan el sensor cuántico compacto de Q.ANT
De acuerdo con Q.ANT el sensor cuántico de partículas detecta y clasifica las partículas de los polvos de impresión en función de su tamaño, número, composición y, en el futuro, forma.
La empresa afirma que el sensor cuántico compacto cabe en cualquier mesa de trabajo de laboratorio.
Fuente: Q.ANT.
El sensor de partículas compacto e industrializado de Startup Q.ANT mide el tamaño, la velocidad y la trayectoria de las partículas en líquidos y gases.
Este análisis de partículas les proporciona a los fabricantes un mayor control del proceso, para obtener una mejor calidad, una mayor eficiencia y métodos más sostenibles.
El sensor se basa en tecnología cuántica que puede utilizarse para medir las propiedades del polvo de impresión en tiempo real, de una forma fácil de manejar. En el futuro, con ayuda de la inteligencia artificial (IA), también se podrá determinar la forma de las partículas.
En la manufactura aditiva (AM), las propiedades del polvo de impresión con partículas de metal, plástico o cerámica desempeñan un papel decisivo, ya que el tamaño, el número y la composición de las partículas finas influyen en el curso del proceso.
El sensor está disponible en dos versiones: el sensor Q.P2 analiza partículas en un rango de 2 µm a 50 µm, mientras que el Q.P20 mide partículas de 20 µm a 700 µm. Ahora, por medio de un programa de socios, Q.ANT puede personalizar el sensor para aplicaciones específicas.
Ya sea para la propia producción de polvo, en el reprocesado o para la AM de componentes basada en polvo, una mezcla lo más homogénea posible y con ingredientes de alta calidad es crucial para el flujo del proceso. Esto significa que las diferentes granulaciones de polvo pueden dar lugar a propiedades de material específicas. En el proceso de reprocesamiento del polvo, en el que se reutilizan las partículas no usadas del lecho de polvo, deben filtrarse las partículas modificadas.
El sensor de partículas Q.ANT les proporciona a los fabricantes y procesadores de polvo información inmediata sobre el proceso. El sensor detecta y analiza partículas en materias primas y materiales de alimentación, independientemente del medio, que puede ser líquido, gaseoso o en polvo. De este modo, es posible monitorear, optimizar y controlar la calidad del proceso en tiempo real.
La IA puede clasificar las partículas según su forma
De acuerdo con Q.ANT el sensor cuántico de partículas detecta y clasifica las partículas de los polvos de impresión en función de su tamaño, número, composición y, en el futuro, forma.
La tecnología cuántica aplicada permite extraer conclusiones sobre el tamaño, el número y la distribución de las partículas individuales. En el futuro, el sensor cuántico también podrá clasificar formas. La inteligencia artificial que incorpora puede capacitarse para distinguir formas predefinidas, como partículas elípticas o esféricas, de las redondas. Ello exige capacitarla para casos concretos.
Los proyectos piloto han demostrado que la calidad de los datos es muy alta. Por ejemplo, la IA puede distinguir aglomerados de partículas en polvos metálicos de partículas individuales. Para desarrollar otros casos de uso en aplicaciones particulares, Q.ANT ofrece programas específicos.
“Esto brinda a la industria un acceso temprano a esta nueva solución para problemas especialmente difíciles, sin tener que pasar por largos ciclos de desarrollo”, afirmó Vanessa Bader, ingeniera de proyectos para clientes de Q.ANT.
Agregó que sus socios tienen la oportunidad de trabajar con ellos para integrar el sensor cuántico en sus procesos de producción y adaptarlo a sus aplicaciones.
La empresa afirma que el sensor cuántico compacto cabe en cualquier mesa de trabajo de laboratorio, y que es más rápido y fácil de manejar en comparación con el largo proceso convencional de toma de muestras para analizar partículas. Un ordenador normal es todo lo que se necesita para transferir y visualizar los datos medidos. El sensor está inmediatamente listo para su uso mediante una página web en el navegador.
“No hay que instalar nada. No se necesita potencia informática adicional ni una capacitación complicada para los empleados”, afirma Bader. Los datos se analizan mediante un pequeño servidor integrado directamente en el sensor de partículas.
El sensor cuántico de partículas detecta y clasifica las partículas de los polvos de impresión en función de su tamaño, número, composición y, en el futuro, forma.
Contenido relacionado
Manufactura aditiva: el papel de la tecnología de materiales
Descubra cómo la ciencia de los materiales potencia la manufactura aditiva, permitiendo la creación de estructuras complejas y personalizadas con precisión.
Leer MásInnovaciones en manufactura aditiva: el futuro sostenible
Descubra cómo la manufactura aditiva, o impresión 3D, está remodelando el panorama de la manufactura sostenible, optimizando el uso de materiales y reduciendo el desperdicio.
Leer MásManufactura aditiva en el sector médico: prótesis personalizadas
La manufactura aditiva está revolucionando el campo médico con prótesis altamente personalizadas que no solo imitan la estética natural, sino que ofrecen funcionalidad mejorada y costos reducidos.
Leer MásSustentabilidad: clave para extender la utilidad de su máquina-herramienta
Las máquinas-herramienta ya adoptan algunos principios claves de la economía circular. La Asociación Europea de Fabricantes de Máquinas-Herramienta (CECIMO) analizó sus cualidades desde el diseño, el mantenimiento, el reequipamiento, el reacondicionamiento y el reciclaje de sus componentes que, además de extender la vida útil de estas máquinas, posicionan a sus fabricantes como pioneros en esta transición.
Leer MásLea a continuación
Mesas magnéticas optimizan la electroerosión en producción de piezas complejas
Evolución en Moldes venía asumiendo varios retos para el mejoramiento de sus procesos de manufactura de componentes complejos para sus moldes. La aplicación de mesas magnéticas optimizó el mecanizado por electroerosión y mejoró sus tiempos de entrega.
Leer MásPor qué los talleres en México usan tornos tipo suizo
En México, el uso de tornos tipo suizo ha venido en crecimiento. Si bien empezó con aplicaciones dedicadas a la industria de la joyería y médica, ahora se utilizan para diversas aplicaciones en las industrias automotriz, electrónica, aeroespacial y de petróleo y gas.
Leer MásNuevas tendencias en instrumentos de medición e inspección
La precisión en la manufactura no es opcional, es una necesidad. Desde la integración de sistemas de medición en tiempo real hasta innovaciones en tecnologías sin contacto, la medición precisa resulta esencial para cumplir con las exigencias de tolerancias estrictas y optimizar los procesos de control de calidad. Exploramos los recientes avances en metrología y su impacto en industrias como la automotriz y la aeroespacial, donde la precisión es clave.
Leer Más